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On Kalman Filter Solution of Space–Time Interpolation

Toshio M. Chin

Abstract—The approximate Kalman filtering algorithm presented in [1]
for image sequence processing can introduce unacceptable negative eigen-
values in the information matrix and can have degraded performance in
some applications. The improved algorithm presented in this note guar-
antees a positive definite information matrix, leading to more stable filter
performance.

Index Terms—Data assimilation, Kalman filter, Markov random field,
recursive least-squares, satellite imaging.

I. INTRODUCTION

In [1], an approximate Kalman filtering method has been introduced
for time-recursive solution of an image sequence reconstruc-
tion/restoration problem. Let the vectorxk be the collection of the
unknowns over an image grid withN pixels at a time-indexk, and
yk be the under-constraining (e.g., sparse) observations ofxk. The
solution is then sought for the time-varying, space-time optimization
(recursive least-squares [2]) problem

min
x ;x ;���;x

k

i=1

fkxi � Fixi�1k
2

M + kyi �Hixik
2

N g (1)

forM1 = 0, wherekAk2B � ATBA denotes the quadratic norm ofA
with a positive definite weight matrixB. The minimizing solution̂xk
for (1) can be computed time-recursively by applying a Kalman filter
algorithm to the dynamic system

xk =Fxk�1 +wk (2)

yk =Hxk + vk (3)
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wherewk andvk are mutually uncorrelated sequence of zero-mean
Gaussian processes with covariancesM�1 andN�1. A key aspect
in this formulation is that images are reconstructed/restored by opti-
mizing their local attributes such as spatial gradients against closeness
to the observations. The algebraic manifestation of this locality is that
the given matricesF;H;M;N (denoted without the time-indexk for
lack of ambiguity hereafter) have sparsely banded structures. Examples
include the partial differential equations of fluid dynamics used forF

[3] and smoothness constraints of low-level vision used forH [1].
There is an economical incentive to exploit the given sparse matrix

structures during recursive computation ofx̂k, as the Kalman filter re-
quires co-recursion of anN � N matrix for a typically largeN . For
example,N can range104 � 10

7 in geophysical applications known
as “data assimilation” (dynamic mapping of atmospheric and oceanic
variables from sparse observations including satellite measurements
[3], [4]). In standard Kalman filter, the covariance matrix̂Pk of the
estimation errorxk � x̂k is recursively computed. The algorithm pre-
sented in [1] performs recursion of the estimation error information
matrix L̂k � P̂�1

k
instead, as the inherent sparseness in the formula-

tion is more apparent in the structure of the information matrix (e.g.,
M andN themselves are the information matrices forwk andvk,
respectively). By limiting the matrix bandwidth appropriately, the in-
formation matrixL̂k can approximate the error covariances compactly
using onlyO(N) nonzero elements. In fact, the elements of the infor-
mation matrix can be identified as the parameters of a Markov random
field (or regression in space) [1].

The algorithm presented in [1] for recursion of a sparsely approxi-
matedL̂k, however, does not guarantee positive definiteness. Negative
eigenvalues are not only infeasible in an information matrix but also
causes of numerical inaccuracy and inefficiency (e.g., during iterative
inversion ofL̂k). This note presents an alternative recursion scheme
that preserves positive definiteness in the approximatedL̂k. Also, the
new scheme provides a measure of accuracy of approximation.

II. RECURSION OFINFORMATION MATRIX

The Kalman filter equations for recursion of the optimal estimatex̂k

based on the dynamic system (2)–(3) can be written as

xk =Fx̂k�1 (4)

L̂k(x̂k � xk) =H
T
N(yk �Hxk) (5)

whereL̂k is the information matrix associated with the estimation error
xk � x̂k. We also denote asLk the information matrix corresponding
to the prediction errorxk � xk. The sequencêLk associated with the
optimal estimates can be obtained by minimizing the “information” in
a manner consistent with the maximum entropy principle [5]. One way
to realize this is through the following recursion.

Theorem (Recursion of information matrix):Assume that the ma-
trix L̂k�1 + FTMF is symmetric and strictly positive definite. The
estimation error information matrix̂Lk in (5) can then be obtained by
the recursion

Lk(���k) = k���kk
2

L̂
+ kI� F���kk

2

M (6)

L̂k =Lk(���k) +H
T
NH (7)

if ���k in (6) is chosen to minimize the trace ofLk(���k) for eachk.
Moreover,Lk(���k) with the minimum trace is unique and is equal to
Lk.

The recursions (4)–(7) are initialized aŝx0 = 0 and L̂0 = 0

for computation of the minimizinĝxk in (1). For most applications
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FTMF is positive definite; hence so iŝLk�1+F
TMF. Positive def-

initeness and symmetry of̂Lk can be easily verified (and imposed nu-
merically) from (6) and (7), even for an arbitrary���k. A systematic ap-
proximation ofL̂k can be performed by constraining the free parameter
���k so thatLk(���k) would have a desired sparse structure. Such an ap-
proach is explored in Section IV.

To prove the theorem the optimal expressions for���k andLk are de-
rived first. Minimization of the trace ofLk(���k) is equivalent to mini-
mizing each of the (positive real) diagonal element

`jj = k���jk
2
L̂

+ kuj � F���jk
2
M (8)

j = 1; 2; � � � ; N , whereuj and���j are thejth columns ofI and���k,
respectively. Minimizing individually with respect to���j results in the
normal equation(L̂k�1+F

TMF) ���j = FTMuj , which leads to the
optimal���k as

���k = (FT
MF+ L̂k�1)

�1
F
T
M: (9)

The optimum is unique sincêLk�1+F
TMF is nonsingular. The pre-

diction error information matrix then becomes

Lk =Lk(���k)

=M+���k
T (L̂k�1 + F

T
MF)���k

����k
T
F
T
M�MF���k

=M+���kF
T
M����k

T
F
T
M�MF���k

=M�MF(L̂k�1 + F
T
MF)�1FT

M (10)

which turns (7) toL̂k = Lk + HTNH. We next show that these
expressions for the information matrices are indeed consistent with the
Kalman filter error covariances.

The Kalman filter equations can be derived using the maximum like-
lihood principle [6]. Given a generic observationy = Hx + v where
v is a zero-mean random vector with covarianceN�1, the maximum
likelihood (ML) estimate can be given asx(ML) = PHTNy, while the
associated estimation error covarianceP and informationL matrices
areP = L�1 andL = HTNH, respectively [5]. These formulae are
used in the derivation below.

We first combine the dynamic equation (2) with the estimatex̂k�1

andL̂k�1 given from the previous time step to derive the expression
for the predictionxk andLk. The square root of the information matrix
is a whitening operator for the corresponding estimation error. If�̂�� is
a square root such that̂���T �̂�� � L̂k�1, then

�̂�� (xk�1 � x̂k�1) = ���k�1 (11)

where���k�1 is a zero-mean process with covariance matrix of identity
I. Combining this equation with (2) would yield

�̂�� x̂k�1

0
=

�̂�� 0

�F I

xk�1

xk
+

���k�1

�wk

(12)

where���k�1 andwk are mutually uncorrelated. Applying the ML esti-
mation formula to (12) would result in

x
(ML)
k�1

x
(ML)
k

= P
L̂k�1x̂k�1

0
(13)

and

P =
L̂k�1 + F

TMF �FTM

�MF M

�1

�
P11 P12

P21 P22
(14)

wherePij denote theN �N marginal error covariance matrices. The
one-step ahead predictionxk and its error covariance are given by
x
(ML)
k andP22, respectively. The desired expressions can then be ob-

tained by applying the matrix inversion lemma [5] as follows:

xk =P21L̂k�1x̂k�1

=M�1
MFP11L̂k�1x̂k�1

=F(L̂k�1 + F
T
MF� FT

MM
�1
MF)�1L̂k�1x̂k�1

=Fx̂k�1 (15)

which is (4) and

Lk =P�122

=M�MF(L̂k�1 + F
T
MF)�1FT

M (16)

which is (10).
We now combine the predictionxk andLk with the observation

equation (3) to obtain an ML estimate. Again, a square root��� of Lk,
such that���T��� = Lk, is a whitening operator for the prediction error

��� (xk�1 � xk�1) = ���k (17)

where���k has zero-mean and a covariance ofI. Combining with (3)
results in

���xk

yk
=

���

H
xk +

���k

vk
(18)

from which the ML estimate would yield the filtered estimatex̂k and
L̂k. Noting that���k andvk are uncorrelated, the ML estimation formula
would yield

L̂k = Lk +H
T
NH (19)

which is the optimal version of (7), and

L̂kx̂k = Lkxk +H
T
Nyk (20)

which easily leads to (5).

III. I NTERPRETATIONS

The theorem specifies an optimal strategy to chooseLk among the
candidate matricesLk(���k) given by (6). To gain insights into these
candidate matrices, let���k � F(xk�1 � x̂k�1) be the forecast error
whose information matrix is denoted as~Lk � (FP̂kF

T )�1. The
one-step ahead prediction errorx0k � xk � xk can then be written
asx0k = ���k +wk. We now consider expanding the prediction error as
x0k = (I����k)x

0

k +���kx
0

k using a free matrix parameter���k. We then
assign���k = (I� ���k)x

0

k andwk = ���kx
0

k, or equivalently

0

0
=

I����k

���k

x
0

k +
����k
�wk

(21)

from which the (posterior) information matrix forx0k can be obtained
from the ML formula as

Lk(���k) = (I����k)
T ~Lk(I����k) +���

T
kM���k: (22)

By re-parameterization���k � I� F���k, the set of matrices defined as
(22) can be shown identical to the set of the candidate matrices of (6).
Thus, the candidates for the prediction error information matrix can be
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interpreted as the results of the expansion (21), which partitionsx
0

k into
components based on the forecast error (���k) and dynamics error (wk).
The partitioning ofx0k allows access to the matrix structure (for sparse
approximations) through its free parameters. It is reasonable from an
information theoretic perspective [5] that the optimal choiceLk hap-
pens to be the candidate with the least information (or maximum un-
certainty), measured by the trace (sum of eigenvalues). The trace of
the candidate matrices can thus serve as a measure of optimality in this
sense. Note, however, that the trace is not an explicit indicator for other
matrix properties, such as the distribution of eigenvalues and structures
of the eigenvectors, that may also affect filter performance whenLk is
approximated.

IV. A PPROXIMATIONS

Given sparsely banded matricesF;H;M;N (for all k) andL̂0, the
recursive equations (16) and (19) cannot maintain a sparse structure in
Lk andL̂k because of the prediction step (16). In [1], the matrix inverse
in (16) is approximated by a series expansion based on the Jacobi iter-
ation

(L̂k�1 + F
T
MF)�1 =����1 �����1


����1

+����1


����1


����1 � � � � (23)

where��� is the diagonal matrix whose diagonal elements are identical to
those of the matrix̂Lk�1+F

T
MF while


 � L̂k�1+F

T
MF����.

The bandwidth of the approximated inverse increases as more terms
participate in the series. Specifically, ifF is diagonal for allk then the
first two terms in the right hand side of (23) can be used to contain the
matrix bandwidth in the information matrix in (16). IfF has nonzero
off-diagonal elements, only the first term in the series can be used to
prevent spreads in matrix bandwidth in general. This approach to in-
formation matrix approximation is hereafter referred to as theseries
truncationmethod. A major drawback of this approximation method
is that negative eigenvalues can be introduced into the information ma-
trix.

The alternative recursion (6)–(7) introduced in this note can main-
tain positive definitiveness in the information matrix. As a direct ap-
plication of the theorem presented earlier, we can impose an arbitrary
sparse structure on the information matrix by minimizing its trace while
constraining the appropriate elements ofLk(���k) to equal to zero. Nu-
merically this leads to a minimization of a quadratic cost with many
nonlinear constrain equations, which can be optimized iteratively [7].
We refer to this approximation approach as thedirect method.

Constrained minimization in the direct method can be computation-
ally intensive. An economical alternative is to restrict���k to be a di-
agonal matrix. This, referred to as thediagonalmethod, tends to pre-
serve the bandwidth in̂Lk. To compute the optimal diagonal���k, we
let���j = �jjuj and minimize (8) with respect to each diagonal element
�jj , resulting in

diag(���k) = diag(FT
M)=diag(L̂k�1 + F

T
MF): (24)

The set of feasible���k in the diagonal method is a subset of the feasible
set in the direct method. The trace ofLk(���k) resulting from the diag-
onal method would then be larger than or equal to that resulting from
the direct method. In this context the direct method can yield the best
parameters of the Markov random field (as which a sparse information
matrix can be interpreted [1], [3]) approximating the estimation error
at each time step of Kalman filter.

V. EXAMPLES

For comparison, the approximation methods are applied to a one-di-
mensional (1-D) version of the image sequence reconstruction problem
in [1]

min
x(s;t)

k�

0 D

w1
@x

@t

2

+ w2
@x

@s

2

ds dt

+

k

i=1

kyi � x(si; i�)k
2 (25)

where the unknownx(s; t) is defined in part over a 1-D cyclic spatial
domainD and is observed asyk at a single randomly selected location
sk at timet = k� for a fixed interval� . For formulation of a discrete
Kalman filter, the first order differences are used for the derivatives, and
the second and third quadratic terms in (25) are lumped into a single,
vector equation (3) (see [1]). The parameters used here arew1 = 1,
w2 = 0:001, andN = 32.

A unit-magnitude sine wave has been reconstructed from its noise-
less (but very sparse) observationsyk using the optimal and approxi-
mated Kalman filter algorithms. The information matrix was approxi-
mated by constraining it to be cyclic tri-diagonal, and the approxima-
tion was executed with each of the truncated series, direct, and diag-
onal methods. All three approximation methods have performed well
with respect to the optimal (nonapproximated) Kalman filter. The root
mean square (rms) difference between the approximate and optimal
estimates was 0.012 atk = 32 for each of the three approximation
methods. For the direct and diagonal methods, the values of the trace
ofLk(���k) were both 0.8% higher than that of (the optimal)Lk, on the
average over 100 time steps. The small discrepancy in the trace values
(between the optimal and approximated) is consistent with the low-rms
error in approximations. For the series truncation method, no negative
eigenvalue was observed during the first 100 time steps.

Next, a translating version of the unit-magnitude sine wave is recon-
structed. This problem is motivated by the data assimilation applica-
tions [4] in which estimation of waves in motion from sparse measure-
ments is often a key task. To incorporate a known translation speedc,
we replace the first integrand in (25) with

w1
@x

@t
� c

@x

@s

2

which is discretized to a cyclically tridiagonal state-transition matrix
F (by a Lax-Wendroff scheme). In general,F here would have a
more complex structure than in the previous case without translation.
With c = 0:1 and keeping all other reconstruction parameter values
identical to the previous case, the optimal and approximate filters have
been applied to the sparse observationsyk. The information matrix
was approximated to be cyclic penta-diagonal. The rms differences
between the approximate and optimal estimates atk = 32 were
10.200, 0.030, and 0.049 for the series truncation, direct, and diagonal
methods, respectively. Along with the unacceptably high-rms value,
negative eigenvalues in the approximated information matrix have
been observed (especially in early time steps) for the series truncation
method, indicating that this approximation method is unsuitable for
the problem. For the direct and diagonal methods, the respective trace
values ofLk(���k) were 11.1% and 30.4% higher than the trace of
the optimalLk (averaged over 100 time steps). The relative increase
in trace is consistent with the relative rms accuracy for these two
approximation methods.

Clearly, the alternative recursion presented in this note, with its
ability to impose positive definiteness in the approximated information
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matrix, improves consistency in filter performance dramatically. The
best sparse approximation given a desired matrix structure can be
computed with the direct method, useful for predicting (through a
miniaturized test case like those considered in this section) the best
possible performance of an approximated Kalman filter.
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